
Service Mesh: hype 
or reality?
Tech4People session at the Red Hat 
Tech Day 2020

January 24th, 2020
Author: Filip Lenaerts

1



Agenda

Introduction

Conclusion

1.
Disclaimer

2.
Service mesh

Concepts

3.
Service mesh 

with Istio

4.
Use-cases

00

00

2



3

1
Intro



Intro

4



Devops platform

5

measured Broad Network access

Elasticity

R
es

ou
rc

e 
p

oo
lin

g
Self Service



6

Source:
https://nl.m.wikipedia.org/wiki/Bestand:Warning_icon.svg

https://nl.m.wikipedia.org/wiki/Bestand:Warning_icon.svg


7 Source: BINGO generator

https://www.buzzwordbingogame.com/cards/custom/?title=Cloud+Native&exclamation=cloud+native+bingo%21&free_square=&terms=microservice%0D%0Aservice+mesh%0D%0AFaaS%0D%0Adevops%0D%0Ashift+left%0D%0Aagile%0D%0AIaC%0D%0Apipeline+as+code%0D%0Agitops%0D%0AAPI+gateway%0D%0Azero+trust%0D%0Aoverlay%0D%0Atest+drive+development%0D%0Akaizen%0D%0Asprint+planning%0D%0Abacklog%0D%0Astory+point%0D%0Aretrospective%0D%0Aiterate%0D%0Awar+room%0D%0Acontainer%0D%0Adocker%0D%0Apipeline%0D%0ACD%0D%0ACI


8

My sincere apologies!



9 Source: 
http://www.gregerwikstrand.com/cargo-cult-innovation/innovation-bingo/

Hype?

Sidecars? 
Yet another new paradigm

Easy development?
Hard to get started with

New Infrastructure?
My ops already get apesh*t crazy with those containers

Istio?
Yet another new greek work 

to remember!

http://www.gregerwikstrand.com/cargo-cult-innovation/innovation-bingo/


10

Applications Platform

Cloudnative



Cloud Native

11 https://github.com/cncf/toc/blob/master/DEFINITION.md

CNCF Cloud Native Definition v1.0

Cloud native technologies empower organizations to build and run scalable 
applications in modern, dynamic environments such as public, private, and hybrid 
clouds. Containers, service meshes, microservices, immutable infrastructure, and 
declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and 
observable. Combined with robust automation, they allow engineers to make 
high-impact changes frequently and predictably with minimal toil.

The Cloud Native Computing Foundation seeks to drive adoption of this paradigm by 
fostering and sustaining an ecosystem of open source, vendor-neutral projects. We 
democratize state-of-the-art patterns to make these innovations accessible for 
everyone.

Scalable Applications

Dynamic Environment

Loosely coupled systems

Robust automation

Resilient

Manageable

Observable

https://github.com/cncf/toc/blob/master/DEFINITION.md


Cloud native apps

12

- Service-oriented architecture
- Each functionality is one services (anti-monolith)
- Communication between services: queueing service

Enables:

- Parallel development 
- Short lifecycles
- Fast release cycles
- Module based upgrades (theory)

Requires

- Devops approach
- Versioned APIs 

Microservices - one of many implementation options

“According to IDC, by 2022, 90% of all new apps will 

feature microservices architectures that improve the 

ability to design, debug, update, and leverage third-party 

code; 35% of all production apps will be cloud-native”



On demand 
self-service

Cloud native platform

13

NIST 800-145

Broad network 
access Resource Pooling

Rapid Elasticity Measured Service



Infrastructure 

14

Common ground



Service mesh

15

Infrastructure layer for microservices communication

Alleviates microservice (code and its developers) from
- Encryption (S2S - zero trust network)
- Authentication
- Authorisation
- Circuit breaker 
- Load balancing
- Any non-functionals

Allow focus on the core uService functionality

Often implemented as side car pattern

Offers additional:

- Monitoring and Traceability(for Ops)
- Enforcement  (for SecOps)



Business drivers

16

● non-functional features/bugfixes without 
impacting the core business functionality

● Faster time to market

● Enables shift left for Security

● Dev+Ops Happy:
○ Dev: doesn't care (!) about 

non-functionals
○ Ops: implementing changes without 

impacting service

● Full visibility on traffic and versions



17

2
Service Mesh: concepts



What is a service mesh?

18

A service mesh is a dedicated infrastructure layer for handling 
service-to-service communication. It’s responsible for the 
reliable delivery of requests through the complex topology of 
services that comprise a modern, cloud native application. In 
practice, the service mesh is typically implemented as an array of 
lightweight network proxies that are deployed alongside 
application code, without the application needing to be aware.  
(Buoyant.io)

A microservices architecture isolates software functionality 
into multiple independent services that are independently 
deployable, highly maintainable and testable, and 
organized around specific business capabilities. [...]
On a technical level, microservices enable continuous 
delivery and deployment of large, complex applications. 
On a higher business level, microservices help deliver 
speed, scalability, and flexibility to companies trying to 
achieve agility in rapidly evolving markets. (New Relic)

A service mesh is an emerging 
architecture for dynamically 
linking to one another the chunks 
of server-side applications -- most 
notably, the microservices 
(ZDNet)



19



20

Container
JVM

Service B
Discovery

Load-balancer
Resiliency

Metrics
Tracing

Container
JVM

Service A
Discovery

Load-balancer
Resiliency

Metrics
Tracing

Container
JVM

Service C
Discovery

Load-balancer
Resiliency

Metrics
Tracing

Before Istio



21

Container
JVM

Service B

Container
JVM

Pod

Service A

Container
JVM

Service CAfter Istio

Pod

Pod

Sidecar

Sidecar

Sidecar



Implementation types of service mesh

22

Definition

Each µservice includes 

library code implementing 

service mesh features

Characteristics
Languages Dependencies.

Original, simple and straightforward.

Trust boundary is small (call library 

inside the process).

Dedicated Resources.

Examples
Hystrix & Ribbon

Definition

Agent (running in a User space process)  installed per node/machine 

managing all the containers on a particular node/machine.

Characteristics
Servicing an heterogenous mix of workloads

Language Agnostic

Resources Sharing à less complex for the configuration (one config per node).

Examples
Consul - Linkerd

Definition

Container running adjacent to the 

container in the same pod.

Characteristics
One sidecar per pod which manages the traffic 

in/out of the application container.

Language agnostic

Dedicated resource (per pod)

More flexibility (Security – routing - …) and easier 

to secure

Examples
Istio –AVI networks – Tigera – Aspen Mesh

Library

Node Agent

Sidecar



Standardisation

23

A standard interface for service meshes

Basic feature set for most common 
features

● Traffic policy
● Traffic telemetry
● Traffic management

Kubernetes native
specified as a collection of Kubernetes 
Custom Resource Definitions (CRD)

Provider agnostic

https://smi-spec.io/

https://smi-spec.io/


24

SMI: partners



25

3
Service Mesh with Istio



26

Istio @ GitHub
14,500 stars

6,400 commits
300 contributors

Integrations
Aspen Mesh

Avi Networks
Cisco

OpenShift
NGINX

Rancher
Tufin Orca

Tigera
Twistlock
VMware.

Features

Automatic load balancing for HTTP, 
gRPC, WebSocket, and TCP traffic.

Fine-grained control of traffic behavior 
with rich routing rules, retries, failovers, 
and fault injection.

A pluggable policy layer and 
configuration API supporting access 
controls, rate limits and quotas.

Automatic metrics, logs, and traces for 
all traffic within a cluster, including 
cluster ingress and egress.

Secure service-to-service 
communication in a cluster with strong 
identity-based authentication and 
authorization.



27

Main architecture
Separation Data / Control plane

Data Plane:
Intelligent sidecar envoy 
proxies

Control Plane:
Sets routes
Configures policy and telemetry 
mixer hub



28

Istio - Envoy proxy

● a high-performance proxy developed in C++ 

● built-in features, for example:
○ Dynamic service discovery
○ Load balancing
○ TLS termination
○ HTTP/2 and gRPC proxies
○ Circuit breakers
○ Health checks
○ Staged rollouts with %-based traffic split
○ Fault injection
○ Rich metrics

● Customization / Extending
○ Lua scripting
○ C++ envoy

● Platform independent

A real working horse



29

Authentication
Service2service

enduser

Authorisation

Accounting

Encryption
mTLS



30

Istio - Envoy proxy at the core of your traffic

● as a sidecar 
○ extract a wealth of signals about traffic 

behavior as attributes. 
○ use these attributes in Mixer to enforce 

policy decisions, 
○ send them to monitoring systems to provide 

information about the behavior of the entire 
mesh.

● The sidecar proxy model also 
allows you to add Istio 
capabilities to an existing 
deployment with no need to 
rearchitect or rewrite code.

Credit: Jess Wheelock



Istio - Mixer

31

Mixer
● a platform-independent component. 
● Mixer enforces access control and 

usage policies across the service mesh, 
and collects telemetry data from the 
Envoy proxy and other services. The 
proxy extracts request level attributes, 
and sends them to Mixer for evaluation.



Istio - Pilot

32

Pilot 
● provides service discovery for the 

Envoy sidecars, traffic management 
capabilities for intelligent routing (e.g., 
A/B tests, canary rollouts, etc.), and 
resiliency (timeouts, retries, circuit 
breakers, etc.).

● converts high level routing rules that 
control traffic behavior into Envoy-specific 
configurations, and propagates them to 
the sidecars at runtime. 

● abstracts platform-specific service 
discovery mechanisms and synthesizes 
them into a standard format that any 
sidecar conforming with the Envoy data 
plane APIs can consume. 



Istio - Citadel

33

Citadel 
● Identity component
● enables strong service-to-service and 

end-user authentication with built-in 
identity and credential management.

● Built-in PKI 



Istio - Galley

34

Galley 
● is Istio’s configuration validation, 

ingestion, processing and distribution 
component. 

● insulating the rest of the Istio 
components from the details of 
obtaining user configuration from the 
underlying platform (e.g. Kubernetes).



35



36



Istio comparaison

37

Also Consul connect, Mesher, Ambassador...

Traefik

- Several native backends/integrations
- Dynamic configuration
- Really simple to deploy
- Ideal for small ITs 
- Not really a service mesh

Kong

- Plugin support
- Flexible
- Easy to maintain

Linkerd

- Node agent
- High performance/traffic load balancer
- No TCP support
- Per request/function routing

Linkerd2 (formerly Conduit)

- Sidecar
- Low complexity
- TCP Support
- Commercial support available
- Low latency 
- Kubernetes specific



Kiali

38

● Manage, observe and analyzes 
service mesh, services and related 
objects as deployments

● Now Openshift integrated



Jaeger tracing

39

- Jaeger + Kiali 
integration 



Netflix Vizceral

40



Service mesh applications

41



42

3
Use-Cases



Use-cases: overview

43

1. Traffic management
2. Canary deployments
3. Environment as service mesh
4. Traffic shadowing
5. Canary Analysis 
6. Istio gateway: build real hybrid applications

a. multi cloud
b. integration BM/VM



Traffic management

44

apiVersion: 
networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: productpage
spec:
  hosts:
    - productpage
  http:
  - match:
    - uri:
        prefix: /api/v1
    route:
    ...

Flexible routing strategies, based on:

● Domain, subdomain
● Url, paths
● Headers
● User-agent
● Geolocalisation...

Rule-based traffic control means you can route a specific portion 
of traffic to a specific instance of a service (for example, specify the 
percentage of traffic that should hit a canary deploy), or set routing 
rules based on the content of a request



Traffic management - Visibility with Kiali

45

apiVersion: 
networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: productpage
spec:
  hosts:
    - productpage
  http:
  - match:
    - uri:
        prefix: /api/v1
    route:
    ...

Flexible routing strategies, based on:

● Domain, subdomain
● Url, paths
● Headers
● User-agent
● Geolocalisation...



Traffic management - Visibility with Kiali

46

apiVersion: 
networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: productpage
spec:
  hosts:
    - productpage
  http:
  - match:
    - uri:
        prefix: /api/v1
    route:
    ...

Flexible routing strategies, based on:

● Domain, subdomain
● Url, paths
● Headers
● User-agent
● Geolocalisation...



Canary Deployment

47



Traffic shadowing and sensitive deliveries

48

● Test for errors, exceptions, 
performance, and result parity. 

● Mirror 100% of the traffic  

● No impact on current traffic 

● Compare and observe with production 
data (Twitter Diffy like)

● Traffic is mirrored as “fire-and-forget”



Deployment driven by canary analysis 

49

● A prerequisite to implementing canary 
releases is the ability to effectively 
observe and monitor your 
infrastructure and application stack. 

● Gradual rollout of new functionality 
limits the potential system blast radius 
of any operational issues

● Deployment impact analysis by metrics 
and traces analytics (Harness like)



Environment as a Service mesh

50

● Service-to-Service as 
Code :-)

● Define cluster wide 
routing definitions

● Apply to any 
environment



51

4
Hype or Reality



52



53



54

Reality?

Sidecars? 
Yet another new paradigm?

Proxies are proven technology

Easy development?
Hard to get started with.

Easier, no non-functionals

New Infrastructure?
My ops already get apesh*t crazy with those containers
Your Ops get F_I_N_A_L_L_Y insight in those containers

Istio?
Yet another new greek work 

to remember!
YEP!


